If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2+3x-358=0
a = 7; b = 3; c = -358;
Δ = b2-4ac
Δ = 32-4·7·(-358)
Δ = 10033
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{10033}}{2*7}=\frac{-3-\sqrt{10033}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{10033}}{2*7}=\frac{-3+\sqrt{10033}}{14} $
| 2a+3=3(2a+3)-4a | | 3x-12=8x+33 | | 2x+48+16+90=180 | | -(c-12)=6 | | 4n+6=252 | | 6x-12+4x+8=180 | | 10+8=3x+27 | | 7(x-3)=5x+11 | | 5x-6-3x=-48 | | 7x-3+50=77 | | 6x+31+6x+31=19x-36 | | .12–2u=9u+45 | | -14+2=-4(x+6 | | 22=16-x | | 2n+10–6n=18 | | 6x-12+4x+18=180 | | 3x+28=5x+19 | | -9+2x=8x+11 | | 4(b+6)=6b+12 | | 10=-5x-15 | | 4(-3-x)+4(x+2)=-4 | | ½x+6=-6 | | 3x+12=3x+2 | | 13x-x2=0 | | 3x+1+27=5x+19 | | (3y-15)=60 | | 5c-5c=17 | | 19x-7=9+15 | | -18+43=-5(x+9) | | 7y+6+118=180 | | x+x+96+96=360 | | x/84=10 |